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POB 522,11001 Belgrade, Yugoslavia 

Received 14 June 1991 

Abstract. The influence of phonon fluctuations on the dynamics of kink-like domain-wall 
excitationsin theone-dimensional Isingmodel with a transverse field (s = 4) wasinvestigated. 
It was found that suchnon-linearexcitationsbehavealmost likedassical Brownian particles. 
This is the consequence of the emission and absorption of awustic phonons excited by 
domain walls propagating through the vibrating lattice. The effective Miction and diffusion 
wnstants are also evaluated. It was established that the overall process has the character of 
Cherenkov-type radiation. 

1. Introduction 

Thephysicalpropertiesofvarioussubstancescan be affectedagreat dealby the presence 
of pulse- or kink-like excitations, known as solitons. Owing to their extreme stability, 
even in non-integrable models as mainly adopted for 3o systems, the kink solitons play 
an important role in understanding a number of phenomena in real physical systems. 
They thus represent a fairly good description of real objects such as domain walls (DW) 
in magnetics or ferroelectrics [l, 21. Furthermore the appearance of a central peak in 
the energy spectrum of slow neutrons scattered by quasi-io ferromagnets, for example 
CsNiF3 [3,4], or by some uniaxial ferroelectrics (undergoing a qUaSi-lD structural phase 
transition (sm)) [5,6] was quite well explained on the basis of the soliton concept. 

The theoretical description of kinks is based upon the application of several rather 
simple ID models such as sine-Gordon, so-called q-four (q'), king model with a 
transverse field (IMTF), etc. Such a simpliied treatment is not satisfactory for the analysis 
of kink properties in some realistic situations when various (external or internal) per- 
turbations can affect their dynamics significantly. Consequently there is an increasing 
interest in the investigation of soliton behaviour in more realistic models. In that context 
the problem is mainly reduced to the study of both the time evolution of the soliton 
parameters and the corresponding changes of the soliton shape [7]. Furthermore, for a 
consistent treatment of both the kinetics and the thermodynamic properties of kinks in 
the presence of perturbative fields, an adequate kinetic equation (KE) has to be con- 
stituted [SI. 

The investigation of the kinetics of kinks in IMTF is especially important owing to 
their broad application in the theory of magnetism [Q, 101, SIYT [ll, 121, the theory of 
Frenkelexcitons [13], etc. One type of perturbation isalwayspresent in real spin systems 
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even in an ideal lattice. These are the vibrations of the crystal lattice, which considerably 
affect the kink dynamics depending on the strength of spin-phonon interaction. 

In almost all previous approaches to the problem of kink-phonon interaction both 
(spin and vibrational) subsystems were considered as purely one-dimensional (d  = 1) 
[14-191. However, although the spinsubsystemcouldexhibit large anisotropy andcould 
be regarded as ID, this is not necessarily the case with the vibrational one. Thus, for 
example, the ferromagnetic CoCI2.2NC~H,is composedof acollection of linearchains, 
where CoCI, units are aggregated into the I D  king-like ferromagnetic structure embed- 
ded into the monoclinic crystal lattice [ZO]. To this particular example one could add the 
whole family of ID Ising ferromagnets that belong to the seriesof isomorphic transition- 
metal halides: AMB3.2aq (A = Cs, Rb; M = Mn, CO, Fe; B = CI, Br; aq = H20 or 
D,O) [21]. In addition some uniaxial ferroelectric materials (CsH2P04 or PbSGe301,. 
for example) also belong to the class of realistic systems in which ID king-like subsystems 
exist within 3D crystal lattices [6,22]. 

It is obvious that the theoretical description of kinks in real qUaSi-lD substances must 
be based on more appropriate models where these differences in dimensionalities of 
spin and phonon subsystems could be taken into account explicitly. For that purpose we 
shall utilize the continuum counterpart of the model introduced by Pytte 12.31, who 
studied the system of non-interacting Ising chains stacked in a 3D phonon field. This 
model was later generalized by Mijatovii: and MiloSeviC [24], who considered the mag- 
netic phase transitions in the system of weakly coupled Ising chains. 

2. Model 

The Hamiltonian of the system we deal with has the form 
H = H, -t Hi,,, + Hph. (1) 

Here H ,  is the Hamiltonian of the IMW, which in the continuum approximation reads 
[251 

- Js2 2 [U'@, I )  - 1R; U : ( X ,  t)] (2) 

where R,, = IRo( is the lattice constant along the chain, u(x, t) = cos 0(x, t ) ,  q ( x ,  t )  and 
6 ( x ,  t) are polar angles of the spin (or pseudospin) vector, while Q and Jrepresent the 
energy parameters of the transverse field (actual magnetic or effective, tunnelling-like) 
and the nearest-neighbour longitudinal coupling, respectively. 

The interaction between the spin subsystem and the longitudinal (acoustic only) 
phonons is defined by the following Hamiltonian; 

where 

is the Fourier component of the spin( pseudospin)-phonon interaction induced by the 
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couplingstrength parameter (Y = ( C ~ J / J X ) ~ ~ = ~ , ,  m is the mass of each magnetic (or 
ferroelectrically active) ion and e, is the polarization vector of longitudinal acoustic 
phonons with frequency 6 ~ ~ .  

The phonon Hamiltonian has the standard form: 

3. Unperturbed domain walls 

In the absence of perturbations all main features of the IMTF depend merely on a single 
parameter I = J/2Q2. In the ground state (GS) all spins are aligned, i.e. p(x) = O,B(x) = 
Bo = sin-'(1/2A). The most interesting regime is one when the GS exhibits spontaneous 
symmetry breaking (spontaneous polarization in Sz). This can happen only if A exceeds 
some critical value, I > I ,  = 1 /Z .  Then the class of lowest-energy excitations above the 
GS represents a single domain wall (DW), i.e. a polarization kink. These excitations 
correspond to a partial solution (transcendental in general [25]) of equation (2) with the 
boundary conditions q(x+ Tm) = 0, u(x+ i- = Tcos Bo, thus breaking the long- 
range order in s,. 

The dyamics of the system is governed by the pair of Landau-Lifshitz equations 
where u(x, t) and p(x, t )  play the role of generalized momentum and coordinate: 

where, with account of equation ( Z ) ,  Yes is the Hamiltonian density of the unperturbed 
spin subsystem. The corresponding Lagrangian density associated with the above 
equations has the convenient form 

L,(x, t )  = ~.su(x ,  t )  aq /a t  - xs. (6) 

Solutions of equations (5) in closed form can be found for a propagating DW, regarding 
q and B as functions of the coordinate in a moving frame n' = x - ut [2527]. 

In the so-called critical regime (or 'displacive' regime, as customarily named in SFT 
dynamics), I I,, these solutions take the simple form of a polarization kink [25]: 

y x - x , i u t  
S, = 4S, tanh(, 2 (7) 

where 

s, =[I - i / ( 4 , 1 2 ) p  = z(a - h p  

Y / R ~  = ( ~ / R o ) [ ( 4 1 2  - 1)/(4a2 - P)I@ = z ( W R , ) [ ( n  - ~ ) / ( 1  - P 2 11 112 

denotes the inverse width of the kink centred at yo and P = D/UO, D O  = QRo/fidZ being 
the limiting velocity of the soliton. Note that here and furthers = 1/2 was taken. 
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The unperturbed ~m possesses two integrals of motion, the energy relative to the 
OS. 

and momentum. 

For the particular case of kink-like solutions (7) one has the typical relativistic-like form 
for the above quantities (8) and (9), e.g. [25] 

In the presence of perturbations, energy exchange arises between a soliton and an 
external subsystem. Therefore the soliton energy and momentum are no longer integrals 
of motion. 

In the weak-coupling limit the soliton does not iduence the dynamics of the 
vibrational subsystem significantly. Thus, phonons should be treated as an ideal gas of 
quasi-particles that form the thermal bath. On the other hand, changes of the internal 
structure of the kink can also be disregarded. Under such conditions the state of the kink 
will be described by the given values of its momentum and position. 

4. Effective Lagrangian and equations of motion 

Our prior interest is to find equations of motion for kink momentum and position. To 
this end we shall utilize the collective coordinate method, which consists of treating 
these variables as a pair of canonically conjugated ones [8,28-3-30], A strict treatment 
demands taking into account the influence of spin (or pseudospin) waves, which are 
supported by the stationary DW. These excitations are usually stated in terms of small 
deviations of spin components from their equilibrium values [6,31,32]. As excitations 
of the same (spin) field, the interaction between kinks and magnons (orpseudomagnons, 
for highly anharmonic SFT subsystems [32]) has a quadratic form in their corresponding 
variables (e.g. classical spin-polar angles and quantized spin deviations, respectively). 
Additional interaction terms, of third and fourth order in magnon operators as well as 
quadratic in kink variables, also arise at rather negligible scales of the order l / d N  and 
1/N, N being the number of chain sites. Although very important, such kink-magnon 
effects are beyond our present scope, sohereafter we restrict ourselves to the interaction 
of the kink with the 3~ acoustic phonon field only. 

Now we shall derive an effective Lagrangian of the system that does permit our 
dynamic subsystem (the kink DW) to be represented through its canonical variables, 
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position &) and momentum P( t ) .  The procedure consists of substituting of D w  solutions 
(7) into the total Lagrangian of the system: 

Herein we have to integrate overx, keeping in mind that in the presence of a thermostat 
(phonons) DW parameters become time-dependent. So we introduce the ansatz: U = 
u[x - E( t ) ]  and q = q [ x  - E( t ) ] .  That implies a q / a r =  -8 a q / a g .  After integration 
over z = x - E(t) we obtain the effective Lagrangian in the form: 

Here G, designates the dressed spin-phonon interaction 

G, = F,[fl(9) + f & ) l  
with 

Lagrangian (13) greatly resembles the polaron one (Fr8hlich polaron) provided that our 
'polaron' variables P and E are purely classical. Sometimes hereafter we shall term 
LeR (or corresponding Hamiltonian He,  = Pi - Led the 'quasi-polaron' Lagrangian 
(Hamiltonian), havinginmind this correspondence, which isnot merely formal. Namely, 
the soliton can cause a local distortion of the crystal lattice, which follows the motion of 
the DW instantaneously. This effect deserves special attention and will be discussed 
separately. 

The pair of DW variables satisfies the Hamilton equations 

P = -aH.,/aE 8 = aH,,/aP. (16) 
Here He, designates the quasi-polaron Hamiltonian, 

5. Kink kinetic equation and friction 

Let us now derive the w f o r  the kink. We shall follow the general formalism of Zubarev 
[33]  for the description of the dynamic system in the presence of a thermostat based on 
the non-equilibrium statistical operator method. This approach can be easily generalized 
to the present problem, where we have a classical particle (kink) interacting with a 



236 J TekiC et al 

quantum-mechanical thermal bath (phonons). Here we shall briefly quote the original 
method of Zubarev who considered the following model (index m) Hamiltonian: 

H ,  =~~o(~,,~,)+HB(PB,QB)+ C W ( P ~ , ~ , ; P B , Q B ) .  (18) 
I 

Here Ho characterizes the small subsystem (soliton in our case) with dynamic variables 
p,, q,; HB(PB, QB) is the Hamiltonian of a thermal bath (index B) with complete set of 
variables PE, Q B ;  and W(p,, q,; PB, QB) is assigned to an interaction part, which is 
generally assumed to be weak. 

The macroscopic state of the dynamic system is characterized by the distribution 
function defined as 

f@> 4) = (n@, q) )  (19) 
where n ( p .  q) = 2, S@ - p J S ( q  - 4J is the particle density, while the symbol {. . .) 
denotes an averaging over a certain non-equilibrium statistical operator. The procedure 
of deriving the KE does not depend on both the explicit form of HB and the interaction 
of 'particles'with the thermal bath. Furthermoreit is fully independent of the nature of 
the thermostat itself being classical or quantum. Upon introducing suitable re-notation 
of the kink variables, meaning that z1 = q ,  zz = p ,  strict application of the Zubarev 
method leads to an equation that can be written in concise form as: 

Here Lk,(z,, z,) are the kinetic coefficients defined as follows: 

where the symbol (. . .)o stands for a statistical average over the thermal bath, i.e. 
{. . .)o = Tr pB . . . , pB being an equilibrium statistical operator of the thermostat. 

Inourcase W ( p ,  q;  PB, Q,)representstheinteractionofthe kinkwiththe3Dphonon 
field (second term in (17)). Therefore the variablesp and 4 have to be replaced with DW 
momentum (P) and position (e), while the variables of the thermal bath, PB and Q,, 
shoud be replaced by the phonon operators, b+ and b, respectively. From the explicit 
expression of W(P,  5; b+,  b), being linear in phonon operators, it is clear that its value 
as averaged over the equilibrium phonon distribution is equal to zero, e.g. 
(W(P,  e; b+ ,  b)o = 0. Besides, taking into account that in our case J H o / a q  = d(AE)/ 
JC = 0, the direct calculation gives LIZ = L,, = 0. 

For further calculations we adopt the continuum approximation, which implies 
f l  =Szo/y andf, =S%y/3, since then (q-Ro)+O (cf equation (15)). As we do not 
know the explicit solution for E ( r ) ,  as a 6rst approximation we shall take 5 = xo + ut, 
which implies au/aE+ ( a ~ / J ~ ) l ~ = , ~ + , ,  U being the initial DW velocity. Such an 
approach also means that one can neglect the dependence of the interaction term in (13) 
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on the instantaneous DW velocity uDw, thus regarding G, as just depending on U, whence 
dW/ap = dW/dP = 0.  Straightforward calculation also gives aHo/ap = a(AE)/aP = 
uDw. As a consequence of all the above-stated facts, KE (20) finally acquires the form of 
the Fokker-Planck equation, 

af ( P ,  E ;  O/at + uDW af ( P ,  E ;  t)laE 

It is obvious that the kinetic coefficient b2 herein has the meaning of a friction constant, 
and has the following form: 

x {~,Wq - ( 4 .  U)] + ( i j q  + 1)S[w9 + ( 4 . O ) l l .  (23) 

The presence of &functions in (23) enables one to find the explicit expression for the 
friction constant, assuming a simple form for the phonon dispersion: wq = colql for the 
isotropicphononspectrum, or w9 = (c11q11 + cLq:)1/2 for the anisotropicone;co,clland 
c, are, respectively, average, longitudinal and transverse speeds of sound. A further 
analyticalstep to be done belowconsistsofpassing from summation overq tointegration, 
adopting the rule 

2 

as well as 

for isotropic and anisotropic cases, respectively, index D being associated with Debye's 
momentum. After performing integration over 8,  we obtain for the isotropic case, 

and, analogously, for the anisotropic case, 

Intheaboveformulae(24)and(25), B = SL(l/y + y/3), 1Spistheordinarymeannumber 
of phonons, provided that in the case of (25) the dispersion w 9 = q L c I u /  
(U* - ci)  has to be used. The limit wavenumbers q D  and q can be well approximated 
byz/Ro and z/R,, respectively, where R, denotes $e inter-chain distance. 
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For isotropic phonons the asymptotic behaviour of the friction constant in the low- 
and high-temperature limits is predicted as follows: 

Is, + a2e-I 8 - k T  

with 

6 ,  = 3 B 2 n Z R ~ q D c ~ / 1 6 m u 7  62 = fhqDc06,.  

A similar result is obtained for anisotropic phonons: 

with 

6. Brownian motion and Cherenkov-like radiation 

On the basis of the present study one can make the assertion that the dynamics of DW in 
the IMTF as influenced by the 3D phonon field has the character of Brownian motion. 
This is a consequence of Cherenkov-like radiation of acoustic waves. Namely, in com- 
pliance with (23),  L2, # 0 only if the following condition is fulfilled: 

o , * ~ q c o s e = o .  (28)  
Here eis  the angle between the polarization vector of an emitted acoustic phonon and 
the direction of motion of the DW. It means that this process can occur only when the DW 
velocity (U) exceeds the phase velocity of sound, i.e. if U 2 w,/q, thus revealing the 
typical Cherenkov character. Such a conclusion is quite different from those obtained 
in the series of papers by Ivanov, Bar'yakhtar and co-workers [ S ,  29,301, They found 
that Cherenkov-like radiation in some real magnetics, for instance in orthoferrite-type 
ferromagnets, is significantly different from that occurring under the standard conditions 
1341, There it was shown that a DW excites only those phonons whose momentum is 
perpendicular to the plane of the DW, thus predicting the absence of typical Cherenkov 
cone. This conclusion was mainly a consequence of an inappropriate theoretical 
approach to the DW dynamics whereby both subsystems (spins and phonons) were 
considered as purely one-dimensional. In accordance with such an assumption the non- 
linear character of phonon dispersion has a special role. Namely, in the case of linear 
dispersion there arise singularities in the friction constant (LZ2) when the DW velocity 
approaches the speed of sound. In the present context the divergences in LZ2 arise when 
the DW velocity tends to the longitudinal speed of sound. In turn, for the anisotropic 
spectrum of phonons the condition (28) should be written as v 2 ql. 
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From the theory of Brownian motion it is well known that the Fokker-Planck 
equation is fully equivalent to the set of Langevin equations: 

m, a U a t  = P L ~ D W  + ( L d m s ) o D w  = (l/ms)F(t). (29) 
Here F(t) = -dW/dE is the ‘fluctuation’ force, while the effective soliton mass is defined 
by ~ 5 1  

= (V?fh2/f3R?,)S$. (30) 
Finally, using (29) the standard procedure can be applied to calculate the diffusion 
constant attributed to the motion of a kink. Upon completion the final result reads 

D = k T / L , ( T ) .  (31) 
This formula represents the well known Einstein’s result adapted here to the motion of 
a DW that evolves in the system described by the IMTF in the presence of the 3D phonon 
field. As is apparent from (26) and (27), the expression (31) acquires an ordinary form 
just under very restrictive conditions in the limit of high temperatures. 

7. Concluding remarks 

Concluding this paper it should be pointed out that although we have focused our 
analysis on the particular case of soliton (DW) dynamics in ID IMTF within a vibrating 3D 
crystal lattice, our main conclusions are quite general. They are relevant for the whole 
class of real substances in which ID magnetic, ferroelectric or other highly anharmonic 
(structurally unstable) subsystems exist within 3D crystal lattices [34] .  Therefore we 
expect the radiationof acoustic wavesof Cherenkov type tooccur inmost such materials. 
Thegreaterpart ofourresultsshould be valid alsoforothermodels, at least qualitatively. 
Namely, in a recent paper we have predicted almost the same behaviour of so-called 
magnon solitons in the easy-axis Heisenberg model that interact with 3D phonons [36]. 
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